Communication

The Interstitial Atom of the Nitrogenase FeMo-Cofactor: ENDOR and ESEEM Evidence That it is Not a Nitrogen

Tran-Chin Yang, Nathan K. Maeser, Mikhail Laryukhin, Hong-In
Lee, Dennis R. Dean, Lance C. Seefeldt, and Brian M. Hoffman
J. Am. Chem. Soc., 2005, 127 (37), 12804-12805• DOI: 10.1021/ja0552489• Publication Date (Web): 23 August 2005

Downloaded from http://pubs.acs.org on March 25, 2009

More About This Article
Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 13 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

The Interstitial Atom of the Nitrogenase FeMo-Cofactor: ENDOR and ESEEM Evidence That it is Not a Nitrogen

Tran-Chin Yang, ${ }^{〔}$ Nathan K. Maeser, ${ }^{\ddagger}$ Mikhail Laryukhin, ${ }^{\text {§ }}$ Hong-In Lee, ${ }^{\dagger}$ Dennis R. Dean,*,§ Lance C. Seefeldt,, ${ }^{, \ddagger}$ and Brian M. Hoffman*, ${ }^{\star}$
Department of Chemistry, Northwestern University, Evanston, Illinois 60208, Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, Department of Chemistry Education, Kyungpook National
University, Daegu, 702-701, Korea, and Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061

Received August 2, 2005; E-mail: bmh@northwestern.edu; deandr@vt.edu; seefeldt@cc.usu.edu

Nitrogenase, which consists of the electron-transfer Fe protein and active-site-containing MoFe protein, reduces N_{2} to two NH_{3} under atmospheric pressure and temperature in a reaction coupled to the hydrolysis of ATP. ${ }^{1,2}$ Recently, a high-resolution (1.16 \AA) X-ray crystallographic study of the MoFe protein revealed electron density from an atom (denoted \mathbf{X}) inside the active-site metal cluster, the $\left[\mathrm{MoFe}_{7} \mathrm{~S}_{9}\right.$:homocitrate] FeMo -cofactor, at a distance of $2.0 \AA$ from the six "trigonal prismatic" irons and 3.3 D from all the sulfur (Chart 1). ${ }^{3}$ The electron density associated with \mathbf{X} is consistent with a single N, O, or C atom, and it was natural to suggest that \mathbf{X} is an N atom that derives from N_{2} and exchanges during catalysis. ${ }^{3}$ We tested the possibility of an exchanging N by using electron-nuclear double resonance (ENDOR) ${ }^{4,5}$ and electron spin-echo envelope modulation (ESEEM) ${ }^{4}$ spectroscopies to examine the FeMo-co in wild-type (WT) and site-specifically altered MoFe proteins that were turned over with ${ }^{14} \mathrm{~N}_{2}$ and ${ }^{15} \mathrm{~N}_{2}$. From these measurements, we inferred that if \mathbf{X} is a nitrogenous species, ${ }^{6-9}$ then it does not exchange during catalysis. We now have tested whether \mathbf{X} is a N or not by comparing the ENDOR and ESEEM signals from resting-state ($S=3 / 2$) MoFe protein and NMFextracted FeMo -co from bacteria grown with either ${ }^{14} \mathrm{~N}$ or ${ }^{15} \mathrm{~N}$ as the exclusive N source. ${ }^{10-12}$

The first evidence as to the identity of \mathbf{X} was presented long before its presence was even disclosed. In 1987, it was reported that the resting-state MoFe protein's $S=3 / 2 \mathrm{FeMo}$-co displayed X-band ESEEM from hyperfine-coupled ${ }^{14} \mathrm{~N}$, and that the modulation disappeared when the FeMo-co was extracted into NMF. This indicated that the interacting ${ }^{14} \mathrm{~N}$ atoms being observed were associated with protein residues and provided limited evidence against there being a ${ }^{14} \mathrm{~N}$ associated with the FeMo-co. ${ }^{13}$ Subsequently, we analyzed this modulation in detail and used it to examine the consequences of amino acid substitutions to the MoFe protein in the vicinity of the FeMo-co binding site. ${ }^{14,15}$ However, X-band ESEEM might fail to show signals from ${ }^{14} \mathrm{~N}$ with hyperfine couplings far from the optimal value near "exact cancellation", where $A / 2 \sim \nu_{\mathrm{N}} \sim 0.6 \mathrm{MHz}(g \sim 3.9$, X-band). We therefore have repeated the ${ }^{14} \mathrm{~N}$ comparison between protein-bound and -extracted FeMo-co with ESEEM at Q-band, where ν_{N} is 4 -fold larger. Figure 1A presents the Q-band three-pulse ESEEM patterns for the $S=$ $3 / 2$ states of the resting-state MoFe protein and for two preparations of isolated cofactor, as extracted into NMF, ${ }^{12}$ in NMF, with the addition of PhSH to coordinate to the terminal Fe and sharpen the $S=3 / 2$ signal ${ }^{16}$ and also with CN^{-}to bind to the Mo at the opposite end of the cofactor. ${ }^{17}$ The spectrum from the MoFe protein shows ${ }^{14} \mathrm{~N}$ modulation as expected from X-band experiments, with both

[^0]
Chart 1

low ($\sim 2.5 \mathrm{MHz}$) and higher-frequency ($\sim 6.1 \mathrm{MHz}$) components. Simulations following our general ESEEM analysis procedures ${ }^{18}$ indicate that this is the same ${ }^{14} \mathrm{~N}$ that gives the strong modulation previously characterized in our X-band measurements. ${ }^{14,15}$ As can be seen, no modulation persists in either of the isolated FeMo-co preparations; the same is true in traces collected at this and other g-values over a wide range of values for the critical parameter, τ, the separation between first and second microwave pulses. The absence of ${ }^{14} \mathrm{~N}$ modulation in both X - and Q-band ESEEM measurements is powerful evidence against the assignment, $\mathrm{X}=$ ${ }^{14} \mathrm{~N}$. However, it is not proof. The depth of the modulation in ${ }^{14} \mathrm{~N}$ $(I=1)$ ESEEM is largely controlled by, and increases with, the nuclear quadrupole coupling. ${ }^{18}$ However, the interstitial atom X sits on a site of high symmetry (trigonal prismatic) and thus is expected to have a nearly negligible quadrupole coupling and, hence, shallow modulation.

To test the indications from the ESEEM measurements, as before, ${ }^{6}$ we performed a parallel Q-band Mims pulsed ENDOR investigation, examining resting-state MoFe protein and extracted FeMo-co derived from A. vinelandii grown, but with either ${ }^{14} \mathrm{~N}$ or ${ }^{15} \mathrm{~N}$ as the exclusive nitrogen source. Figure 1 B shows ${ }^{14} \mathrm{~N}$ Mims ENDOR spectra collected from the resting-state MoFe protein and NMF-extracted FeMo-cofactor with added PhSH and CN^{-}, which improves the phase memory as seen in Figure 1A. The restingstate MoFe protein exhibits a natural-abundance ${ }^{13} \mathrm{C}$ signal at ~ 7.4 MHz and signals over the range of $1-5.5 \mathrm{MHz}$, arising from ${ }^{14} \mathrm{~N}$ nuclei interacting with the FeMo-co, but none of the ${ }^{14} \mathrm{~N}$ signals of the resting-state MoFe protein is seen in the spectrum of the extracted FeMo-co. As seen in the inset, the spectrum does contain overlapping signals from natural-abundance ${ }^{13} \mathrm{C}$ and distant ${ }^{23} \mathrm{Na}$ ENDOR responses from the buffer solution at $v_{\mathrm{Na}} \sim 7.8 \mathrm{MHz}$. Outside this frequency range, we detect only signals from ${ }^{1} \mathrm{H}$ (not shown). We have not identified the source of the natural-abundance ${ }^{13} \mathrm{C}$ signal associated with the FeMo Mo ; the essentially diamagnetic state of Mo in resting-state FeMo-co makes it unlikely that homocitrate is the source, making cluster-bound PhS^{-}or NMF or \mathbf{X} itself the likely candidate(s).

We further considered the possibility that the somewhat broadened EPR signal of the extracted FeMo-co, even with PhSH and

Figure 1. (A) Q-band three-pulse ESEEM spectra of the resting-state WT MoFe protein (black), FeMo-co in NMF with PhSH and CN^{-}(red trace), and FeMo-co in NMF (blue trace; denoted NMF). (B) Q-band ${ }^{14} \mathrm{~N}$ Mims ENDOR spectra of the WT MoFe protein (black trace) and FeMo-co with $\mathrm{PhSH} / \mathrm{CN}^{-}$in NMF (red trace). (C) Q-band Mims ENDOR spectra of ${ }^{15} \mathrm{~N}$ labeled $\alpha-70^{\text {Gly }} \mathrm{MoFe}$ protein (black trace) and ${ }^{15} \mathrm{~N}$-labeled FeMo-co in $\mathrm{NMF} / \mathrm{PhSH}$ (red trace). Insets to (B) and (C) are taken at higher rf power. Conditions: microwave frequency $=34.80 \mathrm{GHz}$; repetition rates $=250$ $\mathrm{Hz} ; T=2 \mathrm{~K}$; transients $\approx 200(\mathrm{ESEEM}), 2000($ ENDOR $) ;$ points/trace $=$ $512($ ESEEM $), 256$ (ENDOR); $\pi / 2$ pulse $=24 \mathrm{~ns}($ ESEEM $), 52 \mathrm{~ns}$ (ENDOR); $\tau=240 \mathrm{~ns}(\mathrm{ESEEM}) ; \tau=500 \mathrm{~ns}, \mathrm{RF}=20 \mu \mathrm{~s}$ (ENDOR).
CN^{-}present, is accompanied by a distributed quadrupole coupling of $\mathbf{X}={ }^{14} \mathrm{~N}$, and that this broadens its ENDOR signal; ${ }^{15} \mathrm{~N}(I=$ $1 / 2$) has no nuclear quadrupole moment and routinely gives much sharper ENDOR signals than ${ }^{14} \mathrm{~N} .{ }^{19}$ We therefore grew A. vinelandii that expresses $\alpha-70^{\mathrm{Gly}} \mathrm{MoFe}$ protein (unable to reduce N_{2} to ammonia) on ${ }^{15} \mathrm{~N}$-urea, purified the MoFe protein, extracted the FeMo-cofactor in NMF/PhSH, and performed ${ }^{15} \mathrm{~N}$ ENDOR experiments on both samples (Figure 1C). The ${ }^{15} \mathrm{~N}$ ENDOR spectrum of the MoFe protein displays well resolved responses from two kinds of ${ }^{15} \mathrm{~N}$: one with an effective coupling ${ }^{20} A^{\prime}\left({ }^{15} \mathrm{~N} 1\right) \sim 2.5 \mathrm{MHz}$, corresponding to a coupling in the $S=3 / 2$ manifold of $A^{3 / 2}\left({ }^{15} \mathrm{~N} 1\right)$ $\sim 1.4 \mathrm{MHz}, A^{3 / 2}\left({ }^{14} \mathrm{~N} 1\right) \sim 1.0 \mathrm{MHz}$; a second with $A^{\prime}\left({ }^{15} \mathrm{~N} 2\right) \sim 0.6$ MHz , corresponding to $A^{3 / 2}\left({ }^{15} \mathrm{~N} 2\right) \sim 0.3 \mathrm{MHz}, A^{3 / 2}\left({ }^{14} \mathrm{~N} 2\right) \sim 0.2$ MHz ("goal-post" marks). ${ }^{20,21}$ We also looked for smaller hyperfine couplings in experiments with longer τ, but no new signals were observed. Analysis shows that ${ }^{14} \mathrm{~N} 1$ gives rise both to the Q-band ESEEM (Figure 1A) and the deep X-band modulation. The doublet with $A^{\prime}\left({ }^{15} \mathrm{~N} 2\right) \sim 0.6 \mathrm{MHz}$ may arise from the ${ }^{14} \mathrm{~N}$ nucleus, giving rise to shallow modulation at X-band. ${ }^{14,22}$ The extracted FeMo-co
shows none of the ${ }^{15} \mathrm{~N}$ signals seen with the protein, but does show the signals from natural-abundant ${ }^{13} \mathrm{C}$ and ${ }^{23} \mathrm{Na}$.

The loss of ${ }^{14} \mathrm{~N}$ ESEEM (Figure 1A) and ${ }^{14} \mathrm{~N}$ ENDOR (Figure 1B) seen in the resting-state MoFe protein upon extraction of the FeMo-co in NMF and loss of the ${ }^{15} \mathrm{~N}$ ENDOR signals of the $\alpha-70^{\text {Gly }}$ MoFe protein upon extraction of the FeMo-co (Figure 1C) show that these ${ }^{14 / 15} \mathrm{~N}$ ENDOR signals from the resting-state MoFe protein all arise from protein-bound N nuclei, and not from the cofactor itself. It is hard to imagine that the variety of spectroscopic methods discussed here could have missed a signal from $\mathbf{X}=\mathrm{N}$ unless the nucleus is uncoupled from the electron-spin system, $A^{3 / 2} \sim 0 \mathrm{MHz}$. The Q-band ENDOR of the MoFe protein has detected a ${ }^{15} \mathrm{~N}$ signal with $A^{3 / 2}\left({ }^{15} \mathrm{~N}\right) \sim 0.3 \mathrm{MHz}$, corresponding to a ${ }^{14} \mathrm{~N}$ coupling of $A^{3 / 2}\left({ }^{14} \mathrm{~N}\right) \sim 0.2 \mathrm{MHz}$, and we believe would have detected a coupling of $A^{3 / 2}\left({ }^{14} \mathrm{~N}_{1}\right) \sim 0.1 \mathrm{MHz}$ or less. Current DFT computations suggest that if $\mathbf{X}={ }^{14} \mathrm{~N}$, then a coupling of a MHz or so is expected (similarly for $\mathbf{X}=\mathrm{C}$ or O). ${ }^{8}$ Thus, the results presented here strongly indicate that \mathbf{X} is not an N .

Acknowledgment. This work has been supported by the NSF (MCB-0316038 to B.M.H.) and NIH (GM59087 to L.C.S. and D.R.D.; HL13531 to B.M.H.).

References

(1) Burgess, B. K.; Lowe, D. L. Chem. Rev. 1996, 96, 2983-3011.
(2) Rees, D. C.; Howard, J. B. Curr. Opin. Chem. Biol. 2000, 4, 559-566.
(3) Einsle, O.; Tezcan, F. A.; Andrade, S. L. A.; Schmid, B.; Yoshida, M.; Howard, J. B.; Rees, D. C. Science 2002, 297, 1696-1700.
(4) Schweiger, A.; Jeschke, G. Principles of Pulse Electron Paramagnetic Resonance; Oxford University Press: Oxford, UK, 2001.
(5) Hoffman, B. M. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 3575-3578.
(6) Lee, H.-I.; Benton, P. M. C.; Laryukhin, M.; Igarashi, R. Y.; Dean, D. R.; Seefeldt, L. C.; Hoffman, B. M. J. Am. Chem. Soc. 2003, 125, 56045605.
(7) Hinnemann, B.; Norskov, J. K. J. Am. Chem. Soc. 2003, 125, 14661467.
(8) Lovell, T.; Liu, T.; Case, D. A.; Noodleman, L. J. Am. Chem. Soc. 2003, 125, 8377-8383.
(9) Dance, I. Chem. Commun. 2003, 3, 324-325.
(10) MoFe protein was purified essentially as described (Christiansen et al.) from the appropriate Azotobacter vinelandii strain (wild-type or DJ1313 for the $\alpha-70^{\text {Gly }}$-substituted MoFe proteins). Strain DJ1313, which is incapable of N_{2} fixation, was grown with ${ }^{14} \mathrm{~N}$ - or ${ }^{15} \mathrm{~N}$-urea as the sole nitrogen source. FeMo-co was extracted into NMF essentially as described by Shah (Shah and Brill). When added, thiophenol (PhSH) was at a final concentration of approximately 10 mM , and cyanide at a final concentration of approximately 5 mM .
(11) Christiansen, J.; Goodwin, P. J.; Lanzilotta, W. N.; Seefeldt, L. C.; Dean, D. R. Biochemistry 1998, 37, 12611-12623.
(12) Shah, V. K.; Brill, W. J. Proc. Natl. Acad. Sci. U.S.A. 1977, 74, 32493253.
(13) Thomann, H.; Morgan, T. V.; Jin, H.; Burgmayer, S. J. N.; Bare, R. E.; Stiefel, E. I. J. Am. Chem. Soc. 1987, 109, 7913-7914.
(14) Lee, H.-I.; Thrasher, K. S.; Dean, D. R.; Newton, W. E.; Hoffman, B. M. Biochemistry 1998, 37, 13370-13378.
(15) DeRose, V. J.; Kim, C.-H.; Newton, W. E.; Dean, D. R.; Hoffman, B. M. Biochemistry 1995, 34, 2809-2814.
(16) Rawlings, J.; Shah, V. K.; Chisnell, J. R.; Brill, W. J.; Zimmermann, R.; Munck, E.; Orme-Johnson, W. H. J. Biol. Chem. 1978, 253, 1001-1004.
(17) Cui, Z.; Dunford, A. J.; Durrant, M. C.; Henderson, R. A.; Smith, B. E. Inorg. Chem. 2003, 42, 6252-6264.
(18) Lee, H.-I.; Doan, P. E.; Hoffman, B. M. J. Magn. Reson. 1999, 140, $91-$ 107.
(19) Tierney, D. L.; Martásek, P.; Doan, P. E.; Masters, B. S.; Hoffman, B. M. J. Am. Chem. Soc. 1998, 120, 2983-2984.
(20) Hoffman, B. M.; DeRose, V. J.; Doan, P. E.; Gurbiel, R. J.; Houseman, A. L. P.; Telser, J. Biol. Magn. Reson. 1993, 13 (EMR of Paramagnetic Molecules), 151-218.
(21) The observed ${ }^{15} \mathrm{~N}_{1}$ hyperfine coupling constant, $A^{\prime}\left({ }^{15} \mathrm{~N}\right)$, is related to the $S=3 / 2$ coupling by $A^{\prime}\left({ }^{15} \mathrm{~N}\right)=\left(g_{\mathrm{e}}^{\prime} / g_{\mathrm{e}}\right) \times A^{3 / 2}\left({ }^{15} \mathrm{~N}\right)=\left(g_{\mathrm{e}}^{\prime} / g_{\mathrm{e}}\right) \times A^{3 / 2}\left({ }^{14} \mathrm{~N}\right)$ $\times\left(g_{\mathrm{N}}{ }^{15 \mathrm{~N}} / g_{\mathrm{N}}{ }^{14 \mathrm{~N}}\right)=3.6 / 2.0 \times 1.0 \times 1.4=2.5 \mathrm{MHz}$, where g_{e}^{\prime} is the ${ }^{15}$ experimental g-value. The center of the ${ }^{15} \mathrm{~N} 1$ doublet is shifted from the ${ }^{15} \mathrm{~N}$ Larmor frequency by the pseudo-nuclear Zeeman effect.
(22) $A^{\prime}\left({ }^{15} \mathrm{~N} 2\right) \sim 0.6 \mathrm{MHz}$ corresponds to $A^{3 / 2}\left({ }^{14} \mathrm{~N} 2\right) \sim 0.3 \mathrm{MHz}$, which deviates from the value associated with the X-band ESEEM, $A^{3 / 2}\left({ }^{14} \mathrm{~N} 2\right) \sim 0.5 \mathrm{MHz}$. We attribute the difference to perturbation by the mutation at $\alpha-70$, which modulates the ${ }^{14 / 15} \mathrm{~N}_{2}$ hyperfine coupling constant.
JA0552489

[^0]: Northwestern University.

 * Utah State University.
 § Kyungpook National University.
 § Virginia Tech.

